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Abstract. This paper presents a Riemannian discriminative learn-
ing framework for multiple-shot person re-identification. Firstly, image
regions are encoded into covariance matrices or a Gaussian extension
as robust feature descriptors. Since these matrices lie on some specific
Riemannian manifolds, we introduce a manifold averaging strategy to
fuse the feature descriptors from multiple images for a holistic represen-
tation, and exploit Riemannian kernels to implicitly map the averaged
matrices to a Reproducing Kernel Hilbert Space (RKHS), where con-
ventional discriminative learning algorithms can be conducted. In par-
ticular, we apply kernel variants of two typical methods, i.e., the Lin-
ear Discriminant Analysis (LDA) and Metric Learning to Rank (MLR),
to demonstrate the flexibility of the framework. Extensive experiments
on five public datasets exhibit impressive improvements over existing
multiple-shot re-identification methods as well as representative single-
shot approaches.

1 Introduction

Person re-identification, a task of recognising pedestrian appearance in different
time and locations captured with a multi-camera network without field of view
overlap, has attracted wide interest in the field of surveillance. Applications
in security, medical guardianship, tracking, and even online image retrieval on
clothes [1] demonstrate the great while growing significance of the problem.

Current practices on person re-identification have mainly concentrated on
two stages, extracting distinctive while stable features [2–9], and/or learning
discriminative cross-view metrics [10–16]. Due to the enormous challenges in the
task including vast variations in (i) pedestrian viewpoint and pose, (ii) environ-
ment illumination and occlusion, and (iii) camera position, configuration and
resolution, person re-identification still remains an open problem.

Among all the literatures endeavouring to tackle this problem, most focus
on the single-shot scenario [10,12,14–30], which refers to querying one single
image at a time in a gallery constituted by single images, where one identity
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is presented by usually one image (Single-vs-Single, or SvS), or independent
multiple images (Single-vs-Multiple, or SvM), as shown in Fig. 1(a,b). Recently,
approaches based on the multi-shot scenario [2–9,11,13,31–39], where multiple
images of the same person captured in the same camera are grouped as the
probe to match the gallery formed also by multiple-image groups (Multiple-vs-
Multiple, or MvM), have started to blossom (Fig. 1(c)). Owing to the practical
accessibility and wider variation coverage of the extra information, which usually
brings higher and more robust performance, the MvM case is addressed in this
paper. According to different matching schemes, we categorise multi-shot per-
son re-identification methods into four classes: (i) closest point-based approaches
[3,4] where a pair of closest points are exhaustively searched for to calculate the
distance between each group pair; (ii) score voting-based methods [31,32] that
average all similarity scores of all image pairs of two groups as the group simi-
larity; (iii) set structure-based approaches [11,34] which model the distribution
structure of each image group (or set) and measure the similarity of the set mod-
els for matching; and (iv) signature-based ones [2,6,9] that generate a signature
for each group to facilitate subsequent matching, converting the problem into the
single-shot case.

)c()b()a(

Fig. 1. Three cases of person re-identification matching scenario: (a) Single-vs-Single
(SvS), (b) Single-vs-Multi (SvM) and (c) Multi-vs-Multi (MvM). Images outside and
inside the boxes are the probe and gallery respectively. Images corresponding to differ-
ent identities are bordered with different colors. (Color figure online)

Considering that signature generating is not only flexible in feature mod-
eling and concise in multi-frame encapsulation, but also naturally compati-
ble with a wide variety of subsequent processes applicable in the well-studied
single-shot cases, we propose a signature-based approach, following the majority
[2,5–7,9,13,35–39] of the multi-shot community. Specifically, having noticed the
encouraging performance of region covariance matrix (a.k.a. Symmetric Positive
Definite (SPD) matrix) [6,7,28,30,40], we adopt it as our feature representation
of images and further extend it into a pixel-oriented local Gaussian descriptor,
which is also written in the form of SPD matrix under the framework of infor-
mation geometry [41,42]. Considering the fact that both the region covariance
matrix and the Gaussian extension lie on the SPD Riemannian manifold, con-
ventional operations that work in Euclidean space are not directly applicable.
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Hence, we utilize Riemannian metrics to integrate the feature descriptors (i.e.
SPD matrices) of multiple images and measure their similarities, and further
exploit the corresponding Riemannian kernel functions to map points on Rie-
mannian manifold to a high-dimensional Hilbert space for performing discrimi-
native learning. We name our approach Multi-shot Riemannian Discriminative
Learning (MRDL), and show the flowchart in Fig. 2.

MRDL has the following three main advantages. (i) As a multi-shot app-
roach, it models signatures to fuse rich information from multiple images based
on robust feature descriptors, i.e., the region covariance and Gaussian matrix
which characterize correlations between feature dimensions. (ii) MRDL performs
discriminative learning on the manifold, strengthening the discrimination power
of the approach compared to other methods that conduct unsupervised match-
ing, and retaining the geometric structure of the manifold space by operating on
the SPD Riemannian manifold. (iii) What presented in this paper is a framework
with remarkable extensibility. Along with abundant types of features applicable
in the front end and various manifold distance metrics replaceable in the middle
part, the rear end is also an arena for the performance of quantities of discrimi-
native learning algorithms.

The rest of this paper is organised as follows. Related works of both the
overall person re-identification field and the multi-shot branch are introduced
in Sect. 2. Section 3 presents the region covariance and Gaussian descriptors we
employed. Then in Sect. 4, we deliver the proposed method MRDL, including the
kernel derivation of two typical kinds of discriminative learning algorithms: linear
discriminant analysis and metric learning. Subsequently, extensive experiments
are conducted on five benchmark datasets in Sect. 5. Lastly, we summarise our
work and discuss possible future research directions in Sect. 6.

…   …

…
 

  …

Image group Region descrip on matrix Signature

Discrimina ve learning

Probing and ranking

Fig. 2. Workflow of the proposed method. We firstly compute the region description
matrices (covariance or Gaussian) of each image, and those from the same region
of different images are fused to form the signature for the image group. Afterwards,
group descriptors of training samples are processed in the learning phase to find a
discriminative subspace for classification. In the testing phase, signature of a probe
image group is projected into the learned space and matched with the gallery samples.
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2 Related Works

In the early years, discriminative and robust feature extraction [3,4,8,9,18–20,22]
was a dominating research topic in the area of person re-identification. Quite a few
methods sought for representative and robust features with sophisticated designs,
such as spatio shape and appearance context modeling [3], human body symme-
try and asymmetry based local feature accumulation [4], fisher vector encoding [8],
and local maximal occurrence representation [18]. Meanwhile, supervised learn-
ing was also adopted to guide extracting more discriminative features, including
support vector machine (SVM) based ranking [19], weak classifiers boosting [20],
deep neural network training [22], and bag-of-words based patch description [9].
On the other hand, learning discriminative metrics [10,11,13] has rapidly grown
to share the person re-identification empire in recent years. Zheng et al. [10] use
triplets to learn distance metric. Wu et al. [11] adopt a structural SVM based algo-
rithm to rank image sets. Pedagadi et al. [13] apply locality preserving strategy to
Fisher discriminant analysis.

Practically, one can usually obtain more than one frame from a video track
for each person. Owing to the additional information compared with single
images, multiple frames alleviate the disadvantages brought by variations in
viewpoint, pose and occlusion. As mentioned in the previous section, we cate-
gorise approaches specifically designed for or applicable to multi-shot scenario
into four classes: closest point-based, score voting-based, set structure-based and
signature-based approaches.

The first class of closest point-based methods [3,4,8] select the minimum
distance of all sample pairs between two image sets as the set distance. On
the contrary, works on score voting usually average similarities of all possible
sample pairs between the sets [31,32], or reconstruction residuals of each probe
sample from the gallery group [33], to get the set distance. For set structure
modeling, Wu et al. [11,34] formulate image sets as affine hulls, and then conduct
discriminative metric learning [11] or locality constrained collaborative represen-
tation with l-2 regularization [34] on the hulls. Finally, most of the large num-
ber of signature-based approaches compute the mean in the vectorized feature
space [5,9,13,35–37] or on the SPD manifold of region covariance matrices [6,7],
while the others model spatio-temporal appearance [2,38] or body action [39]
to generate a holistic representation for each image group. Among them, mean
Riemannian covariance grid (MRCG) [6] is the most related one to our proposed
method. However, MRCG is unsupervised, while ours performs discriminative
learning on the Riemannian manifold, introducing great discrimination power to
the learned space, which will be detailed in the next section.

3 Region Covariance and Gaussian Descriptor

Suppose we have a dataset with I identities, the i-th of which includes Ti

image groups. The t-th group is composed of Fi,t image frames, and each image
is spatially partitioned into S local regions for more precise modeling since
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different body parts may show sharply contrasted appearances. Tuzel et al. [40]
proposed the region covariance matrix as a fast and robust descriptor, which
aggregates the covariances of all pixel-level feature pairs inside a spatial region.
Let P = [p1,p2, ...,pn] be the data matrix of an image region with n pixels,
where pk ∈ R

d denotes the d-dimensional feature descriptor of the k-th pixel,
the region is encoded by the d × d covariance matrix:

C =
1

n − 1

n∑

k=1

(pk − p̄)(pk − p̄)T , (1)

where p is the mean of pk(k = 1, ..., n).
Since the SPD covariance matrix C captures the second-order statistics of

the features, the first-order statistics, feature mean, is lost. Considering that
C, which encodes the pixel feature variation pattern, and p̄ that captures the
general position of the features in the original space are complementary, we
embed them in a more informative Gaussian representation: (p̄,C). Specifically,
the mean vector p̄ and d × d covariance matrix C are mapped together into the
space of (d + 1) × (d + 1) SPD matrices. Under the framework of information
geometry [41,42], the embedding is fulfilled through two mappings, from affine
transformation (p̄,C1/2) to a simple Lie group, and subsequently to the SPD
matrix space:

G = |C|− 1
d+1

(
C + p̄p̄T p̄

p̄T 1

)
. (2)

We name G as the region Gaussian matrix. Considering local appearances of
the same person usually shift horizontally in different cameras, each pedestrian
image is divided into six horizontal stripes equally, as in [10,37]. For the s-th
(s = 1, ..., 6) stripe, a region Gaussian matrix Gs is calculated through Eq. 2.

Then, for the t-th image group of the i-th identity, the region descriptor of the
s-th stripe of the f -th frame is denoted as Gf,s

i,t , as shown in Fig. 3. Considering
averaging is the most widely applied strategy [5–7,9,13,35–37] in the multi-shot
community, the SPD matrices of multiple images in the same area are averaged
to generate the image group signature Si,t = {Gs

i,t, s = 1, ..., 6}, which will be
explained in detail later in Sect. 4.1.

Similarly, MRCG computes region covariance matrices for densely sampled
patches on each image. Afterwards, a covariance grid is produced for each image
group as signature for direct patch-level matching. The main difference between
MRCG, an unsupervised robust feature extraction method, and our MRDL is
that we design a way to perform discriminative learning on the Riemannian
manifold with each object represented by multiple covariance matrices. Besides,
instead of on a dense patch grid, we extract region covariances on stripes, which
not only takes severe horizontal appearance shifts caused by viewpoint and pose
changes into consideration, but also greatly reduces model complexity. Further-
more, we merge feature mean with the covariance matrix, resulting in a more
powerful local feature representation, the region Gaussian matrix. Extensive
experiments in Sect. 5 exhibit impressive improvements in our approach.
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4 Multi-shot Riemannian Discriminative Learning

4.1 Symmetric Positive Definite Matrix Manifold

Residing on the symmetric positive definite matrix manifold (SPD matrix man-
ifold), which is a special Riemannian manifold, the covariance/Gaussian matrix
distinguishes itself from the common feature descriptors in Euclidean space with
the manifold characterising non-linear data distributions.

Fig. 3. Image group signature genera-
tion. Firstly, the SPD matrices (colored
square) of each image stripe are com-
puted, then those of the same region
from all images in a group are averaged
to generate the signature. Best viewed
in color.

Track Track 
Iden ty 

…

Track Track 
Iden ty 

Fig. 4. Graph embedding technique
in the learning phase. Positive pairs
are constructed with the same-position
matrices of same-identity image tracks
(solid lines); negative pairs are formed
also with the same-position matrices
but of different-identities tracks (dash
lines connected only). Best viewed in
color.

Two different distance metrics are widely applied in Riemannian geometry:
the log-Euclidean distance (LED) [43] and affine-invariant distance (AID) [44]:

dLED(C1,C2) =
∥∥∥log(C1) − log(C2)

∥∥∥
F

(3)

dAID(C1,C2) =
√∑d

k=1 ln2 λk(C1,C2), (4)

where log(C) denotes the matrix logarithm operation, ‖ � ‖F denotes the
Frobenius norm, and λk(C1,C2) (k = 1, ..., d) are the generalized eigenvalues
of C1,C2. Note that in this section, to keep simplicity, C can denote either
covariance matrix (Eq. 1) or Gaussian matrix (Eq. 2).
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With the metrics above, one can find the mean SPD matrix on a manifold
M with m samples by using the Karcher or Fréchet mean, as in [6]:

C = arg min
C∈M

m∑

k=1

d2(C,Ck), (5)

where d can be either Eq. 3 or Eq. 4. We utilize this averaging method to generate
signatures in the previous section.

4.2 Kernel Linear Discriminant Analysis

Although the SPD matrices lie on the manifold, to fully activate the discrimi-
native power beneath the samples, we can also extend the kernel algorithms in
Euclidean space to SPD matrix manifold with appropriate kernel functions. Here
we investigate three Riemannian kernel functions derived from LED and AID,
the log-Euclidean trace (LET) kernel [45], the log-Euclidean Gaussian (LEG)
kernel [46] and the affine-invariant Gaussian (AIG) kernel [46]:

kLET (C1,C2) = tr[log(C1) · log(C2)] (6)
kLEG(C1,C2) = exp(−d2LED(C1,C2)/2σ2) (7)
kAIG(C1,C2) = exp(−d2AID(C1,C2)/2σ2). (8)

where σ is the Gaussian bandwidth. Note that AIG is not strictly positive defi-
nite. But since AID is a true geodesic distance and AIG could yield good results,
it is compared in our experiments.

Let k(C1,C2) = 〈φ(C1), φ(C2)〉 denote a kernel function where φ(·) maps
points on M to a high dimensional Reproducing Kernel Hilbert Space (RKHS)
H for richer representations and inner products. For the three kernels mentioned
above, LET performs explicit mapping while LEG and AIG map implicitly. Sup-
pose we have N training samples on M. We first perform kernel linear discrim-
inant analysis (KLDA) by solving the following optimization similar to [47]:

α∗ = arg max
α

αTKLBKα

αTKLWKα
, (9)

where K is the kernel Gram matrix: Kjl = k(Cj ,Cl) (j, l = 1, ..., N), and LB

and LW are the Laplacian matrices of the between-class and within-class graph
matrices EB , EW respectively:

EB,jl =

{
1/mjl, if Cj and Cl are in the negative sets of each other
0, else

(10)

EW,jl =

{
1/njl, if Cj and Cl are in the positive sets of each other
0, else

(11)

and mjl, njl here indicate the corresponding set sizes. For each sample, a positive
set and a negative set are formed by all same-class samples and different-class



Multiple-Shot Person Re-ID via Riemannian Discriminative Learning 415

samples respectively. The optimization objective α defines a discriminative pro-
jection direction in the RKHS space: w =

∑N
k=1 αkφ(Ck).

In order to focus on close sample pairs that should be paid more attention
to during the classification, inspired by [13], we take advantage of the locality
structure [48] of samples by utilizing the affinity matrix A, which is obtained
through a local scaling method [49]: assign the distance with the q-th nearest
neighbor as the distance scaling factor θk for each point k:

Ajl = exp

(
− d2(Cj ,Cl)

θjθl

)
. (12)

Here q can be set proportional to N . Instead of applying the affinity matrix
on both EB ,EW , we perform neighbor emphasizing by only penalizing close
negative pairs since positive sample pairs are way less in number and all expected
to be drawn near: E

′
B = EB ·A. The affinity A functions as graph weight here.

While, as described above, a signature of an image group contains 6 indepen-
dent SPD matrices. To consider matrices semantically irrelevant in body parts
separately, we relate only the ones of the same stripe by introducing a graph
embedding technique [50] to generate the positive/negative sets, as illustrated
in Fig. 4. For any local matrix, a positive pair is only constructed with the same-
position matrix from other image groups (tracks) with the same identity (solid
lines connected), while negative pairs are formed with also the same-position
matrices of other tracks with different identities (dash lines connected only). As
another way to look at the embedding technique, the 6 stripes are treated as 6
different classes, making a training task with I identities has c = 6I classes.

The problem in Eq. 9 can be tackled by solving the generalized eigen-
value problem: KLBKα = λKLWKα. Once the (c − 1) leading eigenvectors
α1, ...,αc−1 are obtained, the coefficient matrix of (c − 1) projection directions
is naturally settled: A = [α1, ...,αc−1] ∈ R

N×(c−1).
In the testing phase, the SPD matrices in a signature Stest = {Cs

test, s =
1, ..., 6} are projected into the same (c−1)-dimensional subspace through ATKs,
where Ks = [k(C1

train,Cs
test), ..., k(CN

train,Cs
test)]

T , and matched with points of
corresponding spatial position. In the end, the distance between two signatures
Si1,t1, Si2,t2 are obtained by averaging the 6 SPD matrix pair distances:

d(Si1,t1, Si2,t2) =
1
6

6∑

s=1

d(Cs
i1,t1,C

s
i2,t2). (13)

4.3 Kernel Metric Learning to Rank

To further exhibit the flexibility of our framework, we reformulate a metric learn-
ing algorithm to learn another discriminative subspace. Considering that per-
son re-identification is usually formulated as a ranking problem [9,11,16,19,38],
the metric learning to rank [51] algorithm, which is specifically designed for
ranking and also applied in [11], is adopted with the kernel variant. We refer
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to it as kernel metric learning to rank (KMLR). It learns a metric matrix with
respect to which, the ranking list of gallery samples for each probe resembles the
corresponding ground truth list as much as possible.

Given two points in the RKHS space φj ,φl and any metric matrix M =
ΦAATΦT = ΦWΦT where Φ = [φ1, ...,φN ] and W = AAT , distance between
them is represented with Frobenius inner products:

‖φj − φl‖2M = (φj − φl)TM(φj − φl) = (Kj − Kl)TW(Kj − Kl)

= tr(W(Kj − Kl)(Kj − Kl)T ) = 〈W, (Kj − Kl)(Kj − Kl)T 〉F ,
(14)

where K� = [〈φ1,φ�〉, ..., 〈φN ,φ�〉]T .
By defining the opposite of the latter part as a kernel feature map for sample

pair (φj ,φl): ϕj,l = −(Kj − Kl)(Kj − Kl)T , we use the partial order feature
[52] to present a ranking list yk with respect to a sample φk:

ψk(yk) =
∑

j∈X+
k

∑

l∈X −
k

yjl
k

(
ϕk,j − ϕk,l

|X+
k | · |X −

k |

)
, (15)

where X+
k and X −

k are the positive and negative sample set w.r.t. φk, | � | denotes
the set size, and

yjl
k =

{
+1 if φj ranks prior to φl

−1 if φj ranks posterior to φl
. (16)

Then with a ground truth ranking y∗
k for φk, the optimization objective is

formed by introducing the structural SVM framework:

W∗ = arg min
W

{
tr(W) + β · ξ

}
,

s.t.

1
N

N∑

k=1

( 〈W,ψk(y∗
k)〉F︸ ︷︷ ︸

(i)

− 〈W,ψk(yk)〉F︸ ︷︷ ︸
(ii)

) ≥ 1
N

N∑

k=1

Δ(y∗
k,yk)︸ ︷︷ ︸

(iii)

− ξ︸︷︷︸
(iv)

,

∀yk �= y∗
k, W 	 0, ξ ≥ 0

(17)

where ξ is the slack variable and β is the trade-off constant. Δ(y∗
k,yk), the loss

function of yk w.r.t. y∗
k, is set to the difference of AUC (area under the ROC

curve) scores and serves as the SVM margin. Intuitively, the expression Eq. 17
finds an optimal coefficient matrix W by which after projected from the original
RKHS space, the actual rankings of every sample to all relevant samples obtained
simply by Euclidean distances resemble the ground truth rankings close enough
(term (i)), closer than all the other possible rankings (term (ii)) with margins
(term (iii)), relaxable with a slack variable (term (iv)). It can be solved by the
cutting-plane algorithm [53] in an iterative manner.

The same graph embedding and matching scheme in Sect. 4.2 are applied
here.
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5 Experiments

5.1 Feature Representation

As introduced before, our MRDL is flexible with pixel-level feature choices.
However, to make better comparisons, we applied the most widely used
[10,11,19,20,31,33–35,37] color and texture mixture, RGB+YUV+HS with
Schmid and Gabor filters (RGB+YUV+HS+SG). As the same configurations in
the literature, the 13-channel Schmid filters have parameters τ and σ set to (2,1),
(4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2), (10,3) and (10,4)
respectively. Also, the 16-channel Gabor filters use parameters γ, λ, θ and σ2

set to (0.3,4,0,2), (0.3,8,0,2), (0.4,4,0,1), (0.4,8,0,1), (0.3,4,π/2,2), (0.3,8,π/2,2),
(0.4,4,π/2,1), (0.4,8,π/2,1) respectively, each producing a magnitude and phase
as responses. In addition, the pixel spatial position (x, y) is appended. Together
with the 8 color channels, each pixel is presented by a 39-dimensional feature
vector. Thus, the region covariance matrix is of size 39 × 39 and the region
Gaussian matrix 40 × 40. Meanwhile, we compared the feature with two other
ones, RGB+Gradient used in [6] and RGB+YUV+HS+LBP [14], in the exper-
iments.

5.2 Datasets and Evaluation Protocols

We conducted experiments on five benchmark person re-identification datasets:
i-LIDS [27], CAVIAR (CAVIAR4REID) [23], PRID2011 [24], CUHK01 [25] and
SPRD [54]. The famous i-LIDS is constructed with 119 identities with 476
image frames from 2 cameras in an airport arrival hall. Each identity is rep-
resented by 2 to 8 (mostly 4) frames of normalized size 64 × 128 pixels. This
dataset is characterized by large illumination changes and severe occlusions, as
shown in Fig. 5(a). CAVIAR (Fig. 5(b)), a classic multi-shot dataset, consists of
72 identities (50 overlapping ones) in 2 cameras in a shopping center, 10 frames
for each person in each view of size varying from 17× 39 to 72 × 144. The images
were selected manually to maximize variations in resolution changes, light con-
ditions, occlusions and pose changes, making CAVIAR much more difficult to
conquer. As a video-based dataset, PRID2011 is recorded by 2 cameras outside
a building with 385 identities in view A and 749 in view B, and we only make use
of the 200 identities appear in both views. The images in each video track vary
from 5 frames to hundreds with a unified size of 64× 128. Figure 5(c) demon-
strates the viewpoint change and stark difference in illumination, background
and camera characteristics. Despite of the frame number, CUHK01 is a pretty
large set of 971 identities, 2 views and 2 frames each (60 × 160) captured in a
campus. Images in camera A are all of front and back view, and those in cam-
era B are of lateral view (Fig. 5(d)). As a recently released multi-shot dataset,
SPRD (Fig. 5(e)) contains image sequences of 37 identities taken from 24 real
surveillance cameras. This dataset undergoes huge variations in track and frame
number, image size, pose, view, illumination, occlusion, background, even within
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RAIVAC)b(SDIL-i)a(

(c) PRID2011 (d) CUHK01 (e) SPRD

Fig. 5. Sample images of five introduced person re-identification datasets: (a) i-LIDS,
(b) CAVIAR, (c) PRID2011, (d) CUHK01, (e) SPRD. In each dataset except SPRD,
the first row presents images from camera A and the second from camera B. For SPRD,
images from two random cameras are shown for each person. Each identity in each view
is exampled by two frames.

the same sequence. The reason why VIPeR [26], the most well-known dataset,
is not adopted is that it is single-shot-based with only 1 frame per view.

As to evaluation protocols, we split the identities of all datasets into equally
sized training and testing sets, except for SPRD which had been divided into 3
sessions and was evaluated in 3-fold cross validation1 Specifically, the training
identities of i-LIDS, CAVIAR, PRID2011 and CUHK01 were 59, 25, 100 and
486 respectively. All of the datasets except i-LIDS and SPRD are captured by
two views, thus naturally forms two image groups for each identity. For i-LIDS,
we kept at most 4 frames for each person, and equally divided the frames of
each identity into two image groups randomly, as in [4,6]. For SPRD, all image
tracks were used. Also, considering the huge variation in frame number of the
PRID2011 tracks, we selected at most 10 frames randomly in each track, making
it a moderate size to generate signatures. In the testing phase, image groups
from camera A were used as probes, and those from camera B constituted the
gallery. For SPRD, a random group (not necessarily from the same camera view,
making the task more difficult on SPRD) of each identity was selected as the
gallery, and the others as probes. All random splits were performed 10 times. The
performance is measured using the Cumulative Matching Characteristic (CMC)
curve, which shows the probability of finding the correct match in top r ranks.

Several image pre-processing steps were applied before feature extraction.
First, except for CUHK01, all images were resized into a uniform resolution of
64 × 128. Besides, all color channels of each image were normalized by histogram
equalization to handle global illumination changes.

1 http://ivlab.sjtu.edu.cn/best.

http://ivlab.sjtu.edu.cn/best
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5.3 Module Validation

In this subsection, we validate the effectiveness of the proposed approach2 by
step-by-step verification. For space limits, all results are listed in one table. As
demonstrated in Table 1, we firstly analysed each individual component of the
method with KLDA, as well as a brief investigation in the case with KMLR. The
experiments were conducted with the aforementioned RGB+YUV+HS+SG as
features and LEG (Eq. 7) as kernel function. The Gaussian bandwidth σ in kernel
function was derived from the mean distance of training data, and the scaling
factor assigner q for Eq. 12 was set to 0.1N . Here we exhibit CMC accuracies of
r = 1, 5, 10 for quantitative comparisons.

Table 1. Component validation, multi-shot strategy comparison, feature comparison
and kernel function comparison of the proposed method. Here Cov. and Gau. stand
for region covariance and Gaussian matrix as local representations. Unsup., GE and
NE refer to unsupervised matching, supervised learning with graph embedding and
neighbor emphasizing respectively. Default item selections are bolded. CMC accuracies
of r = 1, 5, 10 are exhibited, with the highest ones in each validation group highlighted.

Validation group Validation item
i-LIDS CAVIAR

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

Component validation

Gau.(Unsup.) 0.4500 0.6333 0.7333 0.1600 0.5600 0.7400

Gau.+KMLR 0.5083 0.7167 0.8417 0.4200 0.7200 0.9200

Gau.+KLDA(GE) 0.5750 0.7833 0.8500 0.5000 0.7600 0.8800

Gau.+KLDA(GE+NE) 0.5917 0.8167 0.8917 0.5000 0.7600 0.9200

Cov.+KLDA(GE+NE) 0.5833 0.7917 0.8667 0.4600 0.7600 0.9200

Multi-shot strategy
(Gau.(Unsup.))

Closest-point 0.3167 0.5667 0.7250 0.0800 0.3600 0.6000

Score-voting 0.2500 0.5667 0.7500 0.1800 0.3600 0.6400

Signature(mean) 0.4500 0.6333 0.7333 0.1600 0.5600 0.7400

Feature
RGB+Gradient 0.4917 0.7167 0.8167 0.3600 0.7600 0.9600

RGB+YUV+HS+LBP 0.5250 0.7667 0.8750 0.4200 0.7800 0.8800

RGB+YUV+HS+SG 0.5917 0.8167 0.8917 0.5000 0.7600 0.9200

Validation
group

Validation
item

SPRD i-LIDS CAVIAR

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

Kernel
function

LET 0.2000 0.5286 0.9351 0.3667 0.5083 0.5917 0.2600 0.5600 0.7200

LEG 0.3429 0.7714 0.9675 0.5917 0.8167 0.8917 0.5000 0.7600 0.9200

AIG 0.5429 0.8871 1.0000 0.5750 0.7917 0.8417 0.5000 0.8200 0.9400

It can be observed that compared with the unsupervised version, the pro-
posed discriminative learning approach greatly improves the recognition accu-
racies, which is extremely obvious on the difficult CAVIAR dataset. Meanwhile,
MRDL with KLDA performs generally better than with KMLR, thus the rest
validations in this subsection will be held on MRDL(KLDA). Neighbor empha-
sizing technique boosts the re-identification rate in different degrees on i-LIDS
and CAVIAR, mainly after rank-5, thus it is beneficial for practical monitoring
systems where usually top-10 matches are displayed to the user. On the other
hand, the precisions of region Gaussian matrix are higher than those of region
2 The source code is released on our website: http://vipl.ict.ac.cn/resources/codes.

http://vipl.ict.ac.cn/resources/codes
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covariance matrix mainly on top ranks, especially in the strict multi-shot case
CAVIAR, proving it is better to consider mean information in local descriptors.

Afterwards, we compared the applied multi-shot strategy (signature gener-
ating by averaging) with the previously discussed closest-point and score-voting
ones. It is obvious that averaging yields much better results in most cases, show-
ing that though averaging may lose frame-specific information, it also filters out
noise which is particularly common in reID datasets.

Subsequently, we applied three kinds of pixel-level features in the framework:
RGB+YUV+HS+SG, RGB+Gradient [6,7] and RGB+YUV+HS+LBP [14].
We used region Gaussian matrix as descriptor and KLDA (with neighbor empha-
sizing) as kernel learning method. The results exhibit that RGB+YUV+HS+SG
has generally stronger description ability. We attribute it to richer color channels
of RGB+YUV+HS+SG, compared to RGB+Gradient, and diverse image filters
that spatially spread over neighbor pixels compared to the gradients and LBPs.

Last but not least, we tested the three kernel functions, LET (Eq. 6), LEG
(Eq. 7) and AIG (Eq. 8), on three datasets with RGB+YUV+HS+SG and region
Gaussian matrix. It is obvious that different kernel functions vary dramatically
in the final performance, and LEG and AIG produce higher accuracies than
LET, verifying that discriminative learning on the original manifold preserves
Riemannian geometry better compared to in the explicitly mapped Euclidean
space. While, considering AIG lacks positive definiteness, we prefer to use LEG
in our work. In addition, we are optimistic that the result would be even better
if more appropriate Riemannian metrics or kernel functions are applied.

5.4 Comparison Results and Analysis

We compared MRDL with both the multi-shot community and some represen-
tative single-shot methods on all datasets except SPRD (Table 2), since different
methods reported results on different datasets and none reported on SPRD.

Table 2. Approach comparison chart on i-LIDS (IL), CAVIAR (CA), PRID2011 (PR)
and CUHK01 (CU). A check mark denotes a certain method reported results on a
corresponding dataset. These works are categorized into single-shot (Sin.) ones and
multi-shot ones, which are further divided into closest point-based (CP), score voting-
based (SV), set structure-based (SS) and signature-based (SG) groups.

Category Approach IL CA PR CU Category Approach IL CA PR CU

Sin.

Feature
extraction

SCR [28]
√

CP SDALF [4]
√

MLF [21]
√

SG

Mean

HPE [5]
√

DeepReID [22]
√

LFDA [13]
√

Metric
learning

LADF [29]
√

MRCG [6]
√

EnsembleReID[14]
√ √

COSMATI [7]
√

RMLLC(R) [16]
√ √

DVDL [35]
√ √

SV
ICT [32]

√
Saliency [36]

√
SRID [33]

√
AFDA [37]

√

SS
SBDR [11]

√ √
Model

STFV3D+LFDA[39]
√

LCRNP [34]
√

DVR[38]
√
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Fig. 6. CMC curves of the proposed method and comparison methods on four public
person re-identification datasets: (a) i-LIDS, (b) CAVIAR, (c) PRID2011, (d) CUHK01.
Particularly, the rank-1 accuracies are listed behind the name of each method. Those
of which the CMC curves are unavailable are represented as markers. Here the MRDL
is with KLDA and region Gaussian matrix descriptor.

The CMC curves are shown in Fig. 6. With only half identities in the super-
vised methods, the horizontal axis of CMC curves of the unsupervised SDALF,
LCRNP, HPE, MRCG and SCR are compressed by 50% for fair comparison.
Also, results of methods (LFDA, LADF, DeepReID) with different testing iden-
tity numbers are rescaled in the same way.

The proposed MRDL achieves the highest rank-1 accuracy on all evalu-
ated datasets with improvements of 9.17%, 8.83%, 12.40% and 6.63% over the
state-of-the-art methods, exhibiting impressive effectiveness of the framework.
It can be observed that MRDL is not only discriminative in datasets with small
between-class variations, but also robust on the ones with large within-class vari-
ations in illumination, resolution, occlusion, pose and view. In addition, even
the unsupervised version of our MRDL with region Gaussian matrices only is
better than or comparable with most of the works on i-LIDS, demonstrating
the representation ability of our local descriptors. Besides, we should note that
on CAVIAR, LFDA took different frames in a group as independent training
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samples, which, actually as a single-shot protocol, introduces multi-modality
and is easier to produce higher accuracies in large within-group variance datasets
as CAVIAR. Thus, it’s inappropriate to be directly compared with the multi-
shot MRDL where one image group is treated as one sample. While, DVDL,
STFV3D+LFDA and DVR utilized all frames in each track of the PRID2011
dataset, holding richer information since the very beginning, but are still inferior
to our method in performance. Also, DeepReID on CUHK01 was trained on 871
identities, naturally possessing an edge in the learning phase. But the accuracies
of our MRDL transcend those of it with a large margin.

6 Conclusion

We proposed an effective discriminative learning framework in Riemannian man-
ifold for multiple-shot person re-identification. Different from other multi-shot
approaches, our method represents local stripes as SPD matrices, averages on
manifold to generate signatures, and perform kernelized learning algorithms also
on the Riemannian manifold. Experiments demonstrated the impressive effec-
tiveness, especially the improvements brought by the Riemannian discriminative
learning phase, even for the simple LDA, and superiority of the method over the
state of the arts on five benchmark datasets. We will further explore more suit-
able kernel functions and metric learning algorithms, such as those based on
fixed boundary sample pairs or relative comparison triplets.
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tract No. 2015CB351802, Natural Science Foundation of China under contracts Nos.
61390511, 61379083, 61272321, 61271445, and Youth Innovation Promotion Association
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